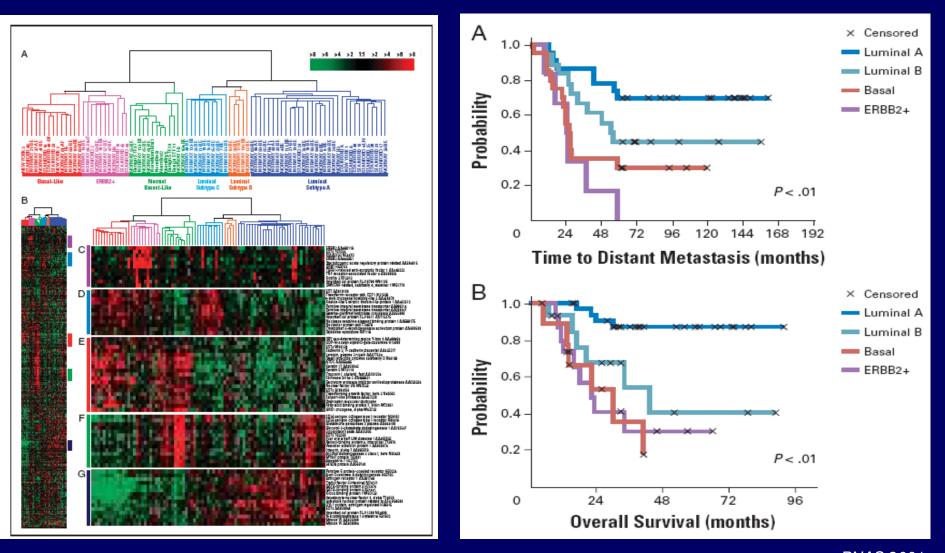
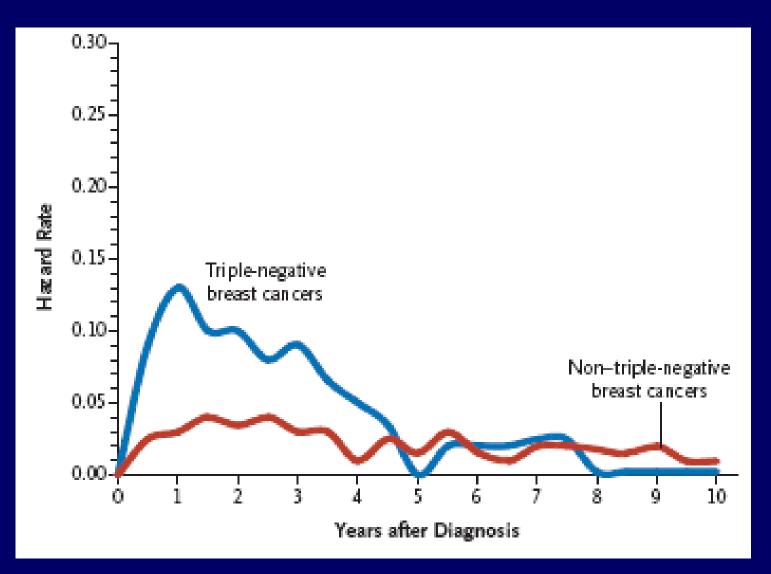
GBCC 2011 Symposium 8: Breast Cancer with Triple Negative Subtype

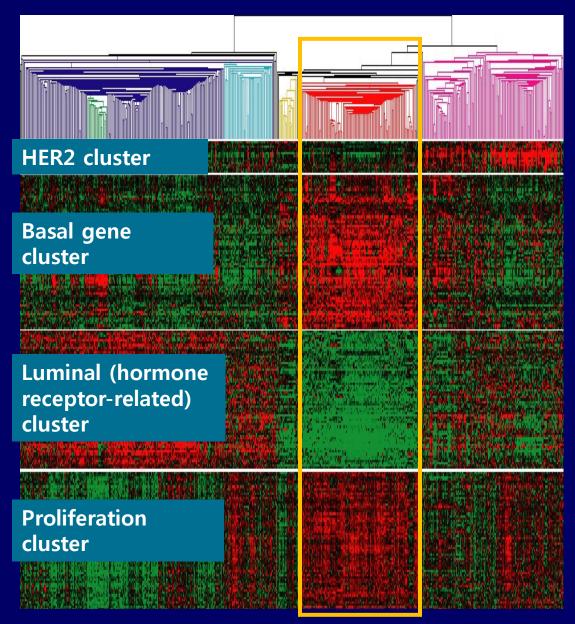

New Strategies for Treatment of Triple Negative Breast Cancer

Jin-Hee Ahn, M.D., PhD.

06 / OCT / 2011


Department of Oncology, Asan Medical Center, UUCM, Seoul, Korea

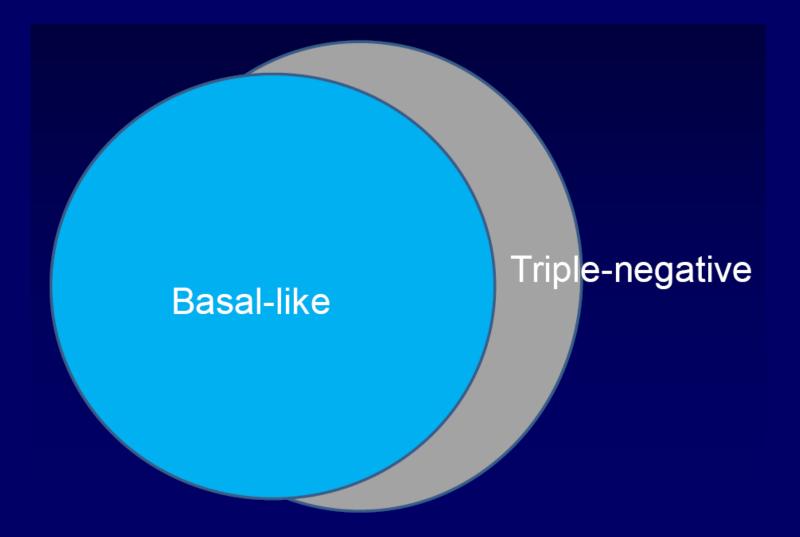
Survival difference based on molecular subtype


PNAS 2001 N Engl J Med 347:1999-2009, 2002

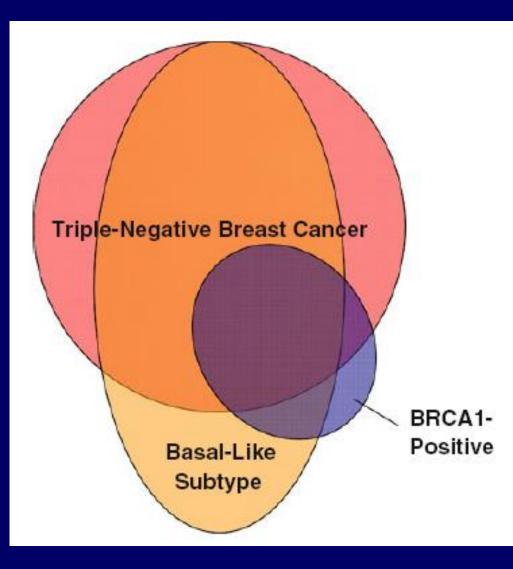
TNBC: Clinical characteristics

NEJM 2010; 363: 1938

The Picture of Basal-like Breast Cancer



- Low ER (and related genes) expression
- Low HER2 cluster expression


\rightarrow usually "triple negative"

- High basal cluster
 - basal cytokeratins
 - EGFR
 - c-kit
 - others...
- Very proliferative
- Often p53 mutant
- Evidence of genomic instability

Triple-Negative Immunophenotype Does Not Overlap the Basal-Like Gene Expression profile

Schematic illustration of overlap among TNBC, basal-like, and BRCA1-related tumors

 Most cancers in BRCA1 mutation carriers are basal-like

 Most basal-like breast cancers are not in BRCA1 carriers.

BCRT 2011; 125: 627

TNBC Shares Clinical and Pathologic Features With BRCA-Related BC: "BRCAness"

Characteristics	Hereditary BRCA-1	Triple Negative	
ER/PgR/HER2 status	Negative	Negative	
BRCA-1 status	Mutational inactivation*	Diminished expression*	
Gene-expression pattern	Basal-like	Basal-like	
Tumor histology	Poorly differentiated (high grade)	Poorly differentiated (high grade)	
Chemosensitivity to DNA-damaging agents	Highly sensitive	Highly sensitive	

*BRCA dysfunction due to germline mutations, promoter methylation, or overexpression of high-mobility group proteins of the type 1 or inhibitor of differentiation

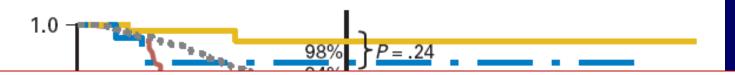
Lisa A. Carey et al. CCR 2010, Oct

Strategies for subtypes: Highlights of the St Gallen 2011 Systemic treatment recommendations for subtypes

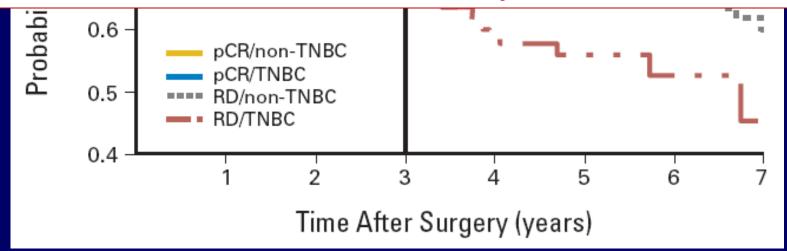
'Subtype'	Type of therapy
'Luminal A'	Endocrine therapy alone
'Luminal B (HER2 negative)'	Endocrine ± cytotoxic therapy
'Luminal B (HER2 positive)'	Cytotoxics + anti-HER2 + endocrine therapy
'HER2 positive (non luminal)'	Cytotoxics + anti-HER2
'Triple negative (ductal)'	Cytotoxics
'Special histological types'*	
A. Endocrine responsive	Endocrine therapy
B. Endocrine nonresponsive	Cytotoxics

Goldhirsch A et al. Ann Oncol 2011; 22: 1736

TNBC Responds to Conventional Chemotherapy


Pathologic complete response:

Molecular class	T-FAC (n=82)	AC –T (n=107)
Luminal A/B	7%	7%
Normal-like	0%	NA
HER2+/ER-	45%	36%
Basal-like/ Triple-negative	45%	26%


- Basal-like / TNBC responds to primary chemotherapy
- ? Explanation of higher response but worse outcome?

Rouzier, et al. Clin Can Res 2005, Carey, et al. Clin Canc Res 2007

TNBC: 'Triple Negative Paradox'

TNBC: heterogenous disease Chemotherapy sensitive sub-populations exist and do very well

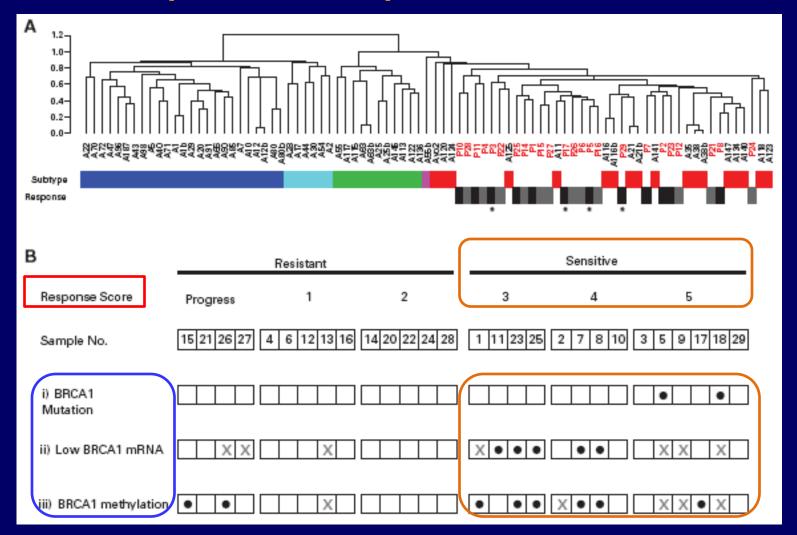
Carey L et al. Clin Cancer Res 2007; 13: 2329

Treatment of TNBC

Treatment of Triple-Negative Breast Cancer

- No standard therapies
 - Treatment should be selected as it is for other cancer subtypes.
- A subset of TNBC is highly resistant to chemotherapy, changing cytotoxic provides only a small benefit.
- BRCA-1 dysfunction may be a therapeutic target
 - DNA cross-link: Platinum
 - DNA repair: PARP-1 inhibitor
- About 90 ongoing clinical trials for TNBC (http://clinicaltrials.gov)

Platinum

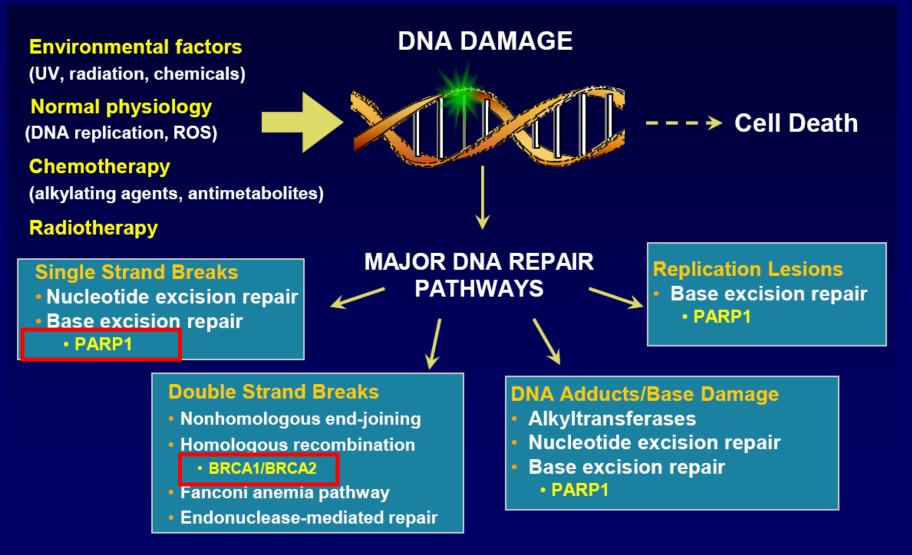

Platinum

- BRCA1: Tumor suppressor gene
 - DNA repair / Transcriptional regulation
 - Maintenance of chromosomal stability
- TNBC with BRCA1 mutations and dysfunctional DNA repair may indicate an increased sensitivity toward DNA-damaging agents.
- Only small studies exist, but are supportive of this approach, including a neoadjuvant trial of cisplatin.

Neoadjuvant Chemotherapy with Platinum Compounds: Phase II Trials in TNBC

Patients	No.	Regimen	Efficacy pCR rate
Monotherapy			
Proven BRCA1 (+)	25	4 x cisplatin q 3w	72%
Any TNBC	28	4 x cisplatin q 3w	22%
Combination			
TNBC with LABC	30	4 x epirubicin/cisplatin/5-FU	40%
		→3 x paclitaxel q1w	
TNBC with LABC	55	4 x cisplatin/bevacizumab q 3w	36%
TNBC with LABC	74	8 x cisplatin/epirubicin/paclitaxel q1w + G-CSF	62%
TNBC with LABC	10	4 x taxotere/carboplatin q3w	50%
TNBC with LABC	125	4 x taxotere/carboplatin or cisplatin with 4 x AC q3w	40%

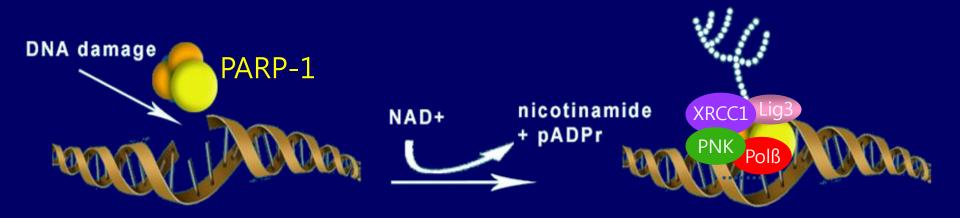
Impaired BRCA1 and neoadjuvant cisplatin response in TNBC

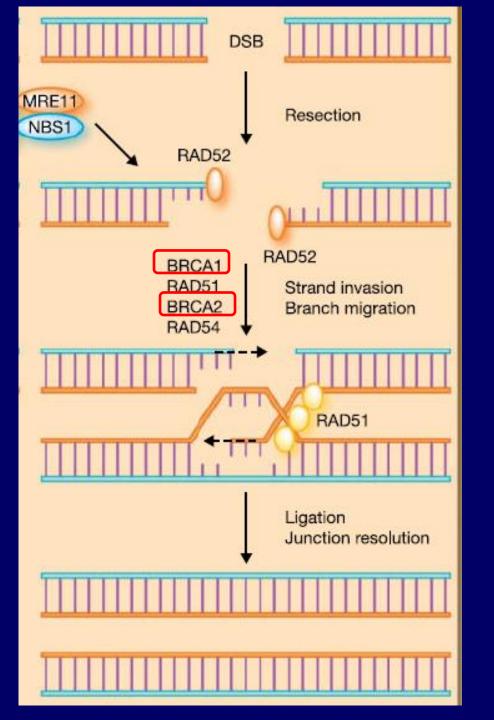

Silver DP, et al. JCO 2010; 28: 1145

Current status of platinum in TNBC

- There is no clear answer in the unselected TNBC population as to whether or not the platinums represent a special agent.
- Additional efforts are needed to discover biomarkers predictive of platinum response.
- There are <u>many ongoing studies incorporating platinum</u> <u>agents</u> for the treatment of TNBC patients.

PARP Inhibitor

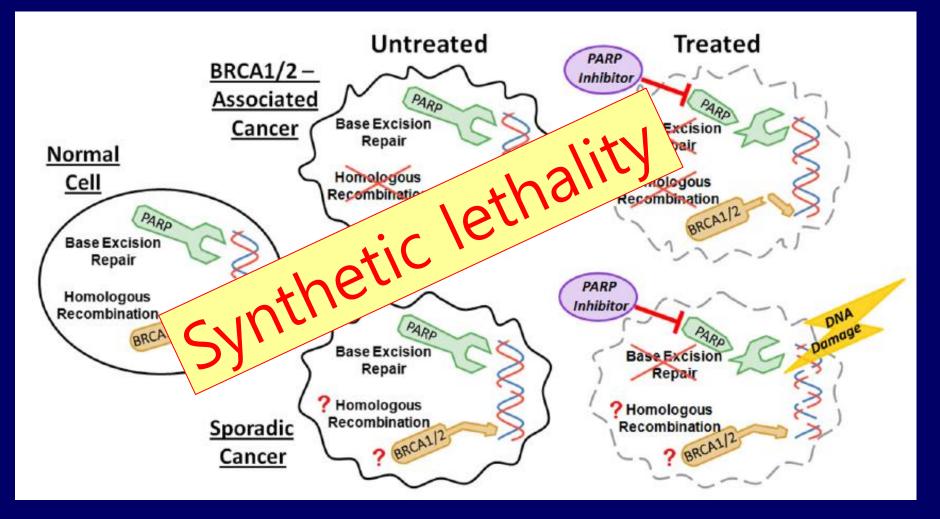

Mechanisms of DNA repair



Helleday et al. Nat Rev Cancer 2008; 8: 193-204

PARP-1

- A key role in the repair of DNA single-strand breaks (base excision repair pathway)
- Binds directly to sites of DNA damage
- Recruits other DNA repair enzymes



BRCA1/2

Homologous recombination

Lisa A. Carey et al. CCR 2010, Oct

PARP Inhibitor Treatment of BRCA1/2-Associated and Sporadic Cancers

Ellisen LW. Cancer Cell 2011, Feb

BRCA dysfunction in TNBC

DNA Repair Mechanism

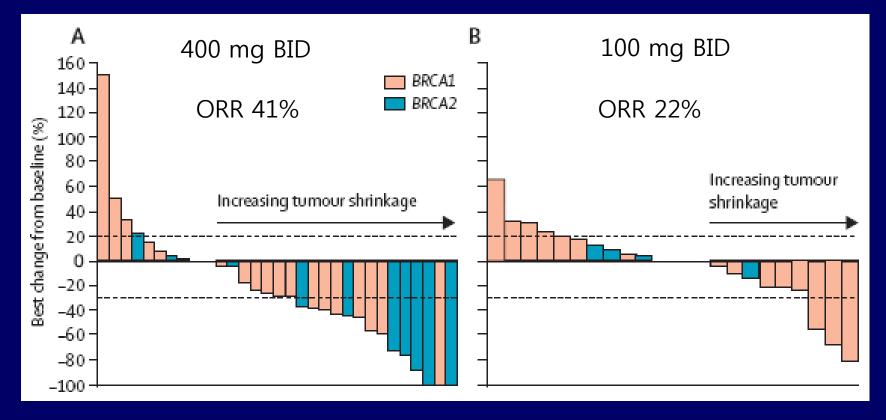
Homologous recombination

DS DNA breaks

If patients have both BRCA1 dysfunction and inhibition of PARP, agents that work by DNA damage have augmented efficacy

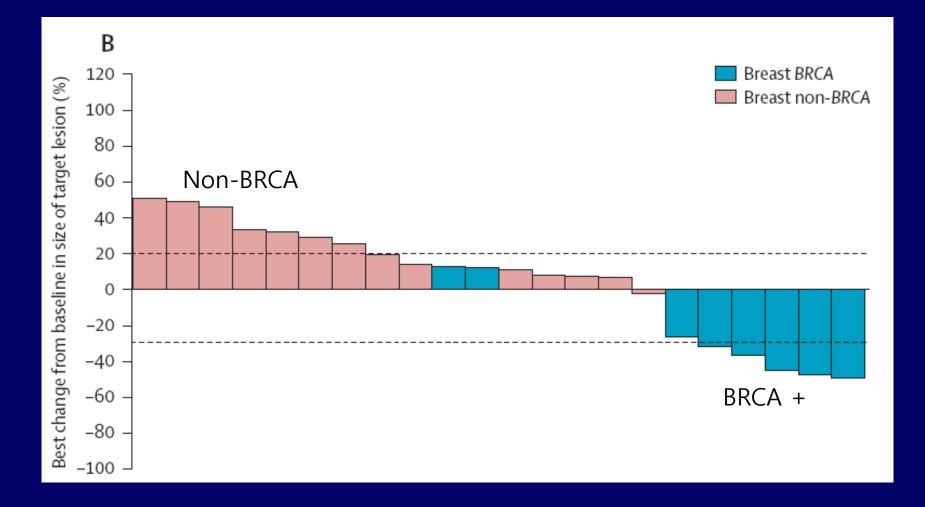
PARP1

Non-homologous recombination


PARP inhibitors are in clinical trials* for both BRCA1 and Triple Negative

PARP inhibitors in development

Agent	Route	Clinical status	company	
Olaparib (AZD2281)	Oral	Phase I and II	AstraZeneca	
Iniparib (BSI-201)	IV	Phase II and III	Sanofi-Aventis	
AGO14699	IV (oral)	Phase I and II	Pfizer	
Veliparib (ABT888)	Oral	Phase I and II	Abbott	
INO-1001	IV	Phase I	Inotek	
CEP-9722	Oral	Phase I	Cephalon	
MK4827	Oral	Phase I	Merck & Co	


Proof of concept trial in BRCA1/2 breast cancer

Olaparib in 54 patients with BRCA1 or BRCA2 mutations and advanced breast cancer

Tutt A, et al. Lancet 2010; 376: 235

Olaparib in TNBC Both BRCA (n=10) and non-BRCA (n=16)

Gelmon KA et al. Lancet 2011; 12: 852

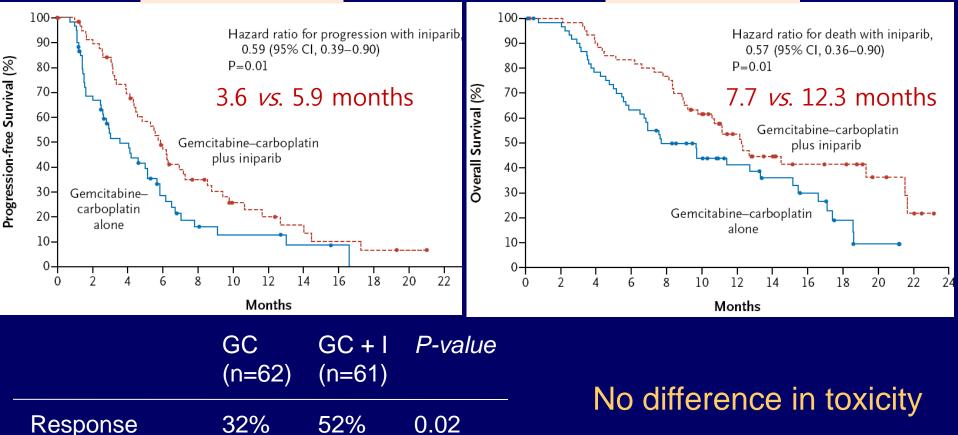
Randomized Phase II chemotherapy + Iniparib in TNBC

Metastatic triple negative 123 patients No more than 2 prior chemo regimens (except gemcitabine, platinum)

Gemcitabine + Carboplatin

Iniparib + Gemcitabine + Carboplatin

- Primary goals: clinical benefit rate, toxicity
- Secondary goals: response, PFS, OS


O'Shaughnessy J et al. NEJM 2011

Randomized Phase II chemotherapy + Iniparib in TNBC: Results

HR 0.59 for PFS

Clinical benefit

HR 0.59 for OS

56%

34%

0.01

O'Shaughnessy J et al. NEJM 2011

PARP1 inhibitor in TNBC

- PARP1 inhibitor is one of the most promising "targeted therapies" for TNBC.
- Future directions
 - More precisely defining the <u>patients population</u> most likely to respond to the PARP inhibition
 - Discovering and validating candidate <u>biomarkers</u> to predict responders
 - Determining the optimal chemotherapy backbone to combine with PARP inhibitors

Anti-angiogenic agent : Bevacizumab

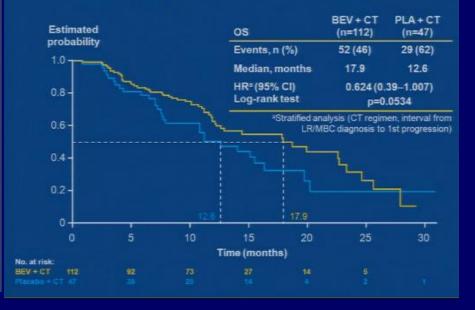
Phase III study of Bevacizumab (BV) and the First-Line Chemotherapy in Metastatic Breast Cancer

	E2100		AVADO		RIBBON-1 (Cape)			RIBBON-1 (Tax/Anthra)	
	Non- BV	BV	Non- BV	BV	Non- BV	BV	Non- BV	BV	
Median PFS, mo	5.8	11.3	7.9	8.8	5.7	8.6	8.0	9.2	
Stratified HR	0.4	48	0.6	62	0.6	69	0.0	64	
(95% CI)	(0.39-	-0.81)	(0.48-	0.79)	(0.58-	0.84)	(0.52-	0.80)	
<i>P</i> values	<.00	001	.00	03	.00	02	.00	01	

Cape, capecitabine;Tax/Anthra, taxane/anthracycline *15 mg/kg cohort

O'Shaughnessy J et al. J Clin Oncol 2010; 28 (7s): Abstract 1005

TNBC: Bevacizumab Analysis of PFS by Subgroups in meta-analysis


Baseline risk factor	n	Hazard ratio	(95% CI)	BV better	Non-BV better
All patients	2447	0.64	(0.58–0.71)	Ò	
Age (years)					
<65	1917	0.62	(0.56–0.70)	\bullet	
≥65	530	0.70	(0.56–0.88)		
Triple negative					
(ER- and PgR- and HER	12-)				
Yes	621	0.63	(0.52–0.76)		
No	1762	0.64	(0.57-0.73)	•	
Visceral disease					
Yes	1707	0.66	(0.59–0.75)	()	
No	740	0.60	(0.49–0.74)	_	
Number of metastatic sit	es				
<3	1463	0.62	(0.54–0.71)		
≥3	980	0.64	(0.55–0.75)	- Ò -	
Disease-free interval					
≤24 months	924	0.65	(0.55–0.77)	- -	
>24 months	1519	0.63	(0.56–0.72)		
Prior adjuvant/ neo-adjuvant chemother	ару				
Yes	1525	0.60	(0.53–0.68)	- _	
No	922	0.71	(0.60–0.84)		
			0.2	0.5 1	2 5

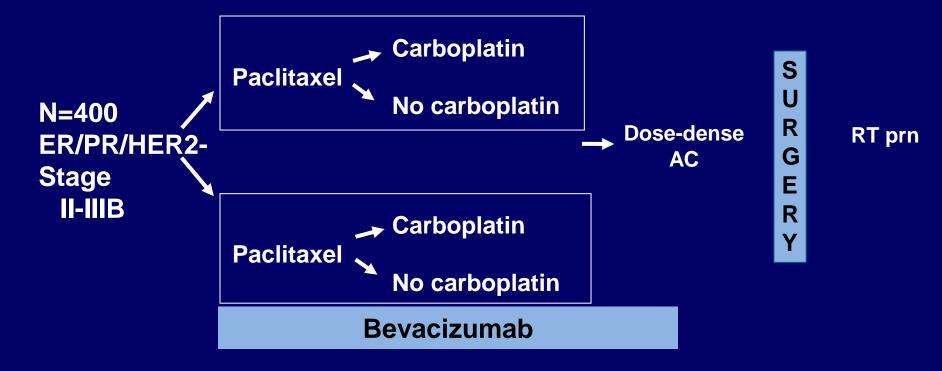
O'Shaughnessy J et al. J Clin Oncol 2010; 28 (7s): Abstract 1005

Subgroup analysis of RIBBON-2 study

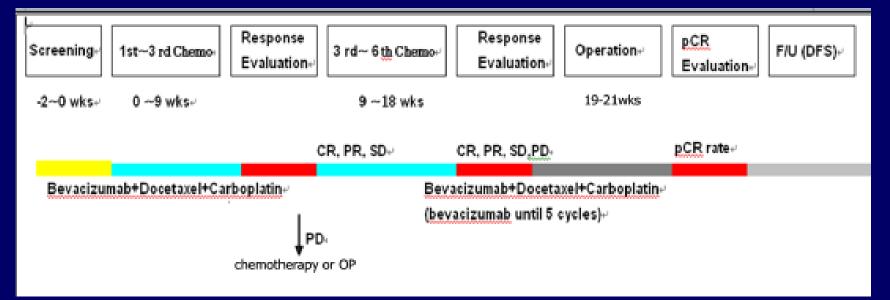
TNBC population: ORR^a Patients (%) Difference: 23% 60 (95% CI 7-39%) p=0.0078 40 41 30 (95% CI 31-51) 20 18 95% CI 8-34) BEV + CT PLA+CT (n=112) (n=47) Stratified analysis (CT regimen, interval from LR/MBC diagnosis to 1st progression)

TNBC population: Interim OS

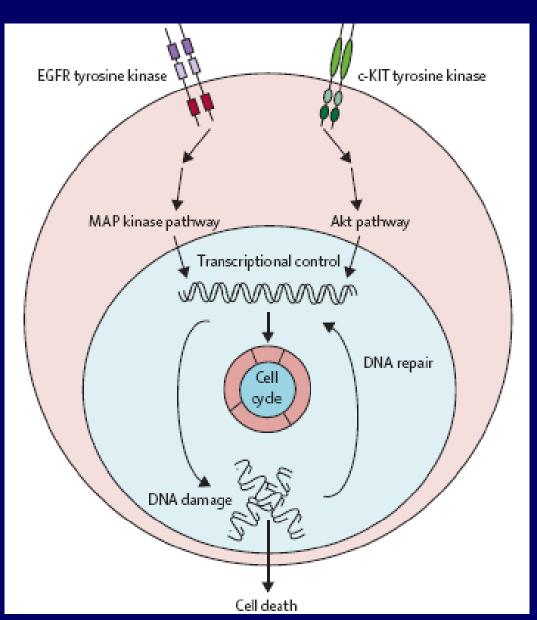
ASCO 2011


Phase III Trial of Adjuvant Bevacizumab Plus Chemotherapy in Early TNBC (BEATRICE)

- Primary endpoint: invasive DFS
- Secondary endpoints:


OS, DFS, distant DFS, tolerability and safety

Intergroup/CALGB 40603: Triple Negative Neoadjuvant Trial


NEAT trial in Korea

- Phase II trial of NEoadjuvant bevAcizumab, docetaxel and carboplatin for Triple negative breast cancer
- Primary endpoint: pathologic CR
- Enrollment was finished in 7/2011

Others

Potential therapeutic targets in TNBC

Coombes RC et al. Lancet Oncology 2007; 8: 235

Ongoing clinical trials of targeted agents in TNBC

Agent	Mechanism	Phase	Setting	Other agents in combination	NCT registry number
Iniparib (BSI-201)	PARP inhibitory activity	Ш	Metastatic	Gemcitabine/carboplatin	00938654
		Π	Metastatic	Gemcitabine/carboplatin	00540358, 01045304
		Π	Neoadjuvant	Gemcitabine/carboplatin	00813956
Veliparib (ABT-888)		Π	Metastatic	Temozolomide	NCT01009788
		Ι	Metastatic	Cisplatin/vinorelbine	NCT01104259
Olaparib (AZD2281)		Π	Metastatic	Paclitaxel	00707707
		Π	Neoadjuvant	None	0078254
PF-01367338		Π	Neoadjuvant	Cisplatin	01074970
Bevacizumab	VEGF monoclonal	III	Adjuvant	None	00528567
		Π	Metastatic	Nab-paclitaxel	00472693
		Π	Metastatic	Paclitaxel/carboplatin	00691379
		Π	Metastatic	Paclitaxel/capecitabine	01069796
		Π	Metastatic	Docetaxel/carboplatin	00608972
Cetuximab	EGFR monoclonal	Π	Neoadjuvant	Docetaxel	00600249
		Π	Metastatic	Cisplatin	00463788
		Π	Metastatic	Ixabepilone	00633464
Panitumumab		Π	Metastatic	Paclitaxel/carboplatin	01009983
		Π	Metastatic	Gemcitabine/carboplatin	00894504
Erlotinib	EGFR kinase inhibitor	Π	Metastatic	None	00739063
		Π	Neoadjuvant	Chemotherapy	00491816
Dasatinib	Src/Abl kinase inhibitor	Π	Metastatic	None	00371254, 00817531
Sunitinib	Multikinase inhibitor	Π	Metastatic	None	00246571
		Π	Neoadjuvant	Paclitaxel/carboplatin	00887575
Everolimus	mTOR inhibitor	П	Metastatic	None	00827567
		п	Neoadjuvant	Cisplatin/paclitaxel	00930930

Transcriptome Analysis of Triple Negative Breast Cancers Identifies Six Distinct Biological Subgroups and Reveals Therapeutic Strategies Brian D Lehmann¹, Joshua A Bauer¹, Xi Chen², Melinda E Sanders³, Yu Shyr^{2,4} and Jennifer A Pietenpol^{1,4} Department of Biochemistry, ²Department of Biostatistics, ³Department of Pathology and ⁴The Vanderbilt-Ingram Cancer Center, Nashville, TN, United States, 37232

- Basal-like TNBC express high levels of proliferation and DNA damage response genes and representative cell lines that are sensitive to cisplatin.

 Mesenchymal-like TNBC are enriched in growth factor and EMT genes and cell lines referentially respond to Src and PI3K/mTOR inhibitors.

- Luminal AR TNBC express high levels of the androgen receptor and cell lines are sensitive to the AR antagonist bicalutamide and Hsp90 inhibitors.

Lehmann BD, et al. SABCS 2010, J Clin Invest 2011; 121: 2750

Conclusions

- TNBC is a distinct subtype of BC and is associated with treatment challenges due to its aggressive nature
- TNBC has no specific target.... Yet
 - Molecular pathways that control tumor development could determine treatment
 - Platinum based chemotherapy is emerging as backbone of new treatments
 - Introduction of novel agents (PARP inhibitor) is showing promise
 - Results from huge amounts of research ongoing in this subtype will help determine the best treatment strategy.

Thank you for your attention !